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Introduction

Mammalian gut microbial communities are dominated by 
members of the Firmicutes and Bacteroidetes [14]. The 
ability of bacteria from these phyla to metabolize other-
wise indigestible complex polysaccharides is important for 
gut function and host health. The starch utilization system 
(Sus) of Bacteroides thetaiotamicron (Phylum Bacteroi-
detes) represents a well-studied gene cluster from a human 
gut symbiont [19]. In this system, SusD enables cell sur-
face starch binding, and in association with the outer mem-
brane proteins SusE and SusF, the affinity of starch bind-
ing is enhanced [28]. The oligosaccharides released by the 
extracellular α-amylase (SusG) are imported into the peri-
plasmic space by SusC, which is a member of the TonB-
dependent receptor family. Further maltooligosaccharide 
metabolism then occurs in the periplasmic space, mediated 
by SusA and SusB [7].

The review by Martens et al. [18] highlights that Sus-
like PULs can be found in the genomes of many sequenced 
Bacteroidetes. Characteristic features of these cell-envelope 
systems include proteins with homology to SusC and SusD 
co-located with a diversity of carbohydrate active enzymes, 
providing evidence for their role in targeting a broad range 
of substrates. While previous studies have focused mainly 
on the importance of Sus-like PULs in glycan catabolism 
in the human gut, emerging data suggests that these loci 
are involved in co-ordinating plant biomass degradation 
in herbivore microbiomes. For example, Prevotella bry-
antii B14 upregulates expression of a xylanolytic Sus-like 
PUL when grown on wheat arabinoxylan [8]. Functional 
screening of metagenomic libraries derived from the Sval-
bard reindeer rumen [23] and Tammar wallaby foregut [24] 
revealed a diversity of carbohydrate active enzymes affili-
ated with the Bacteroidetes arranged in Sus-like PULs with 
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activity against polysaccharide substrates in vitro. The 
results presented in this manuscript build on these obser-
vations by describing the hydrolytic potential encoded on 
Sus-like PULs harbored by members of the Bacteroidetes 
in the rumen of cattle. We first recovered a number of loci 
through functional screening of an enrichment culture 
derived metagenomic fosmid library for clones express-
ing hydrolytic activity against carboxymethylcellulose. 
Additional loci were recovered bioinformatically from 
sequenced rumen isolates belonging to the genus Prevo-
tella, and from Bacteroidales-affiliated genomes recon-
structed from a bovine rumen metagenomic dataset.

Materials and methods

Anaerobic culture of bovine rumen samples

Rumen grab samples were collected from six fistulated Bos 
indicus steers consuming Rhodes grass (Chloris gayana) in 
Rockhampton (QLD, Australia) using protocols approved 
by the Rendel Laboratory Animal Experimentation and 
Ethics Committee. In an anaerobic chamber, rumen sam-
ples were pooled before the digesta particles were sepa-
rated from the rumen fluid by squeezing through two layers 
of cheesecloth. Particles were resuspended in an equal vol-
ume of sterile phosphate buffered saline and homogenized 
with an IKA UltraTurrax® TP18/10. Homogenate (0.01 vol. 
of 1:10 dilution) was added to 10 ml of liquid anaerobic 
medium 1 [3] containing 10 % (w/v) powdered Rhodes 
grass in triplicate, and incubated at 39 °C with overpressure 
of 100 kPa H2 until an OD600 of 0.5 was reached (approx-
imately 16 h). The resulting cultures are therefore reflec-
tive of rumen microbes that can divide rapidly under these 
conditions. Culture material (comprised of grass substrate 
and microbial cells) was pelleted at 10,000×g for 10 min 
at 4 °C. Genomic DNA was extracted from the enrichment 
cultures and aliquots of the homogenated inoculum using 
the NML method [27].

Microbiota community profiling and fosmid library 
construction and screening

Amplicons of the 16S ribosomal RNA gene were pre-
pared for 454 GS FLX Titanium sequencing as previously 
described (amplified from 20 ng of input DNA using prim-
ers 8F15B and 515R14AM; [1]). The data was analyzed 
using QIIME 1.1.0 [5], based on sequence clustering at 
97 % similarity, taxonomic assignment using RDP and 
rarefaction to provide 4,000 sequences per sample. The 
remaining metagenomic DNA from the triplicate enrich-
ment cultures was pooled and used to prepare a large insert 

fosmid library (pCC1FOS; Epicentre Corp.) using meth-
ods as previously described [27]. Clones capable of car-
boxymethylcellulose (CMC) hydrolysis were identified 
using a Congo red assay [23]. A total of ~2 × 104 clones 
were screened. Specific selected clones were subsequently 
screened using the same assay for their ability to degrade 
xylan (from birchwood), xyloglucan (from tamarind), 
lichenan (from Icelandic moss) and glucomannan (from 
konjac; low viscosity). Substrates were purchased from 
Sigma-Aldrich or Megazyme International, and were pre-
pared for use according to manufacturer’s instructions; 
before inclusion into LB agar plates at a concentration of 
0.05 % (w/v).

Functional annotation and analysis of sequences 
from Sus-like PULs

Fosmids from individual clones of interest were induced 
to high copy number according to the manufacturer’s pro-
tocols. Fosmid DNA was extracted using the QIAprep 
spin miniprep kit (Qiagen), incorporating modifications 
for purification of large plasmids. The positional insertion 
of the cloned DNA within the vector was determined by 
Sanger sequencing with primers EPIFOS-F and EPIFOS-
R (Epicentre Corp.). Equimolar amounts of each clone 
(quantified using the Invitrogen Quant-IT dsDNA BR kit 
and Qubit fluorometer) were pooled and a 3-kb paired-
end library was prepared and subjected to pyrosequenc-
ing using 454 GS FLX chemistry (Macrogen Inc., Korea). 
The scaffolds from the resulting data were assembled 
using Newbler v2.6 and annotated using IMG/M-ER [16]. 
ORFs in reconstructed genomes from a published metagen-
omic survey of the bovine rumen [11] (genomes AC2a, 
AGa, AJ, AH, and AQ; available at http://portal.nersc.gov/
project/jgimg/CowRumenRawData/submission/) were 
identified using MetaGeneMark [32]. ORFs in the genome 
of Prevotella bryantii B14 and Prevotella ruminicola 23 
were identified in a previous study [26]. Carbohydrate 
active enzymes (CAZymes) and carbohydrate binding mod-
ules (CBMs) were identified in protein coding sequences 
from these various sources using dbCAN [31], a web 
resource that implements hidden Markov models (HMMs) 
for automated signature domain-based annotations rep-
resentative of each individual family. Sus-like PULs were 
defined as operons encoding proteins with Pfam domains 
[25] belonging to the TonB-dependent receptor (PF00593) 
and SusD-like families (PF12771, PF14721, or PF14322), 
collocated with proteins encoding known CAZyme 
domains. For both the dbCAN and Pfam HMM assign-
ments, a minimum e-value cut-off of 1 × 10−5 was used. 
All putative Sus-like PULs that were recovered from the in 
silico analysis have been described in this manuscript.

http://portal.nersc.gov/project/jgimg/CowRumenRawData/submission/
http://portal.nersc.gov/project/jgimg/CowRumenRawData/submission/


603J Ind Microbiol Biotechnol (2014) 41:601–606 

1 3

Nucleotide accession numbers

Annotated sequences from five fosmid scaffolds have 
been deposited in GenBank under accession numbers 
JX424616-28.

Results and discussion

Bacterial composition of fiber-adherent bovine rumen 
microbiome and cultures enriched on Rhodes grass

Amplicon pyrosequencing of 16S rRNA genes revealed 
differences in community structure resulting from in vitro 
cultivation of the fiber-adherent bovine rumen microbiome. 
The material used to inoculate the enrichments was com-
prised predominantly of sequences from the phyla Bacte-
roidetes (47.2 %) and Firmicutes (42.3 %). The Bacteroi-
detes fraction was dominated by sequences from the order 
Bacteroidales (71 % of Bacteroidetes; 33.5 % of total), 
while the Firmicutes fraction was dominated by sequences 
from the order Clostridiales (91 % of Firmicutes; 38.6 % of 
total). Much of this diversity could not be classified at the 
genus level. These results are comparable to other studies 
that have profiled the fiber-adherent fraction of the rumen 
microbiome from cattle consuming high-forage diets [4, 
11, 22]. The cultures were dominated by representatives 
of recognized genera, including Prevotella (31.4 %), Sele-
nomonas (19.1 %), Psuedobutyrivibrio (11.1 %), Strepto-
coccus (8.4 %), and Fibrobacter (6.6 %). These organisms 
have been enriched in this experiment because they are 
more amenable to in vitro growth under the specific culture 
conditions used. Sequences affiliated to the genus Prevo-
tella were distributed into 16 operational taxonomic units 
(OTUs). Ten of these OTUs contained over 95 % of the 
total Prevotella sequences in the enrichment dataset. Rep-
resentative sequences from these 10 OTUs were compared 
to data from cultured isolates in Ribosomal Database Pro-
ject Release 10.32 ([6]; Table S1). This indicated that the 
two predominant Prevotella OTUs (approximately 55 % 
of total Prevotella sequences) were closely related to P. 
ruminicola 23 and P. bryantii B14, two rumen species for 
which genome sequences are available [26]. The remain-
ing OTUs were more similar to unsequenced isolates, sug-
gesting that metagenomic DNA extracted from the cultures 
contains material from both sequenced and “novel” Prevo-
tella strains.

Recovery of Sus-like PULs from fosmid library sequencing 
and the genomes of ruminal Prevotella isolates

Metagenomic DNA extracted from the enrichment cul-
tures was pooled and used to construct a large insert fosmid 

library. A total of 142 clones expressing hydrolytic activ-
ity towards carboxymethylcellulose were recovered from 
a screen of 2 × 104 clones. It is probable that additional 
loci capable of CMC hydrolysis are present in the enrich-
ment cultures but were not recovered due to biases asso-
ciated with functional screening of fosmid clones in E. 
coli. Pooled DNA from each of the fosmid clones was 
sequenced and assembled into scaffolds. Mapping of inser-
tion sites (based on Sanger sequencing with vector specific 
primers) indicated that several scaffolds were assembled 
from multiple fosmid clones (data not shown). The clos-
est match to each scaffold larger than 10 kb (n = 51) was 
determined using Standard Nucleotide BLAST (BlastN) of 
the NCBI nr database [12]. Approximately 41 % of scaf-
folds were most closely affiliated to the genus Prevotella 
(n = 21), followed by Fibrobacter (29 %; n = 15) and 
Streptococcus (6 %; n = 3). The Fibrobacter derived scaf-
folds have a high degree of similarity to regions within the 
genome of F. succinogenes S85 [29] and were not analyzed 
further (data not shown).

A total of ten scaffolds encoding Sus-like PULs were 
recovered from the fosmid library. Each PUL encodes 
a putative SusC-like protein exhibiting homology to the 
TonB-dependent receptor family (PF07715) and a protein 
with homology to a SusD-like family (PF12771, PF14721, 
or PF14322). PhylopythiaS [21] was used to establish 
that each of these scaffolds was derived from a Prevotella 
genome. Insertion site mapping identified five scaffolds 
(designated Sc00026, 28, 33, 44 and 66) where the com-
plete Sus-like PUL region could be accurately assigned 
to at least one fosmid clone (Fig. S1). For the remaining 
five scaffolds, both sites of insertion into the vector could 
not be mapped to an individual clone and as a result were 
excluded from further analysis. The genomic architecture 
of these loci is described in more detail in Fig. S2.

Concomitant with the diversity of predicted carbohy-
drate active enzymes (CAZymes [31]; Fig. 1), functional 
activity screening (Table 1) indicated that the five Sus-like 
PULs selected for further analysis have different substrate 
ranges. The substrates for this screen were chosen based on 
the CAZyme profiles of the fosmid clones. The Sc00026 
PUL targets both carboxymethylcellulose and glucoman-
nans. This scaffold encodes a 16S rRNA gene with 99 % 
sequence identity to P. bryantii B14. Comparison of the 
PUL-encoding contig from Sc00026 to the genome of P. 
bryantii B14 revealed a high level of similarity to a region 
of B14 previously shown to encode β-1,4-endoglucanase 
(GH5) and mannanase (GH26) activities ([10]; GenBank 
accession U96771 and Table S2). Association of the B14 
glycoside hydrolases with a Sus-like PUL has not previ-
ously been reported, although the β-1,4-endoglucanase 
activity has been extensively studied. The B14 locus is 
unusual in that two β-1,4-endoglucanases with different 
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molecular weights are transcribed from two adjacent open 
reading frames with a −1 frameshift [10, 20]. The Sc00026 
PUL appears to have a similar structure, with the ORFs 
shown on the right of this locus in Fig. 1 potentially also 

encoding two endoglucanases that share a common N-ter-
minal domain.

The Sus-like PUL encoded by Sc00066 only expresses 
activity against carboxymethylcellulose (Table 1). This 

Fig. 1  Gene organization of selected PULs from bacteria resident in 
the bovine rumen. Loci were identified from functional screening of a 
fosmid library derived from anaerobic cultures enriched on Rhodes 
grass (this study); in the genome of Prevotella ruminicola 23 [26]; or 
from re-analysis of draft genomes reconstructed from a metagenomic 
survey [11]. Green genes represent putative outer membrane proteins 

of unknown function; black genes encode putative response regulators; 
white genes encode putative transmembrane proteins; TonB indicates 
members of the TonB-dependent receptor family of proteins that are 
predicted to transport solutes and macromolecules. GH glycoside hydro-
lase (red), CBM carbohydrate binding module, CE carbohydrate ester-
ase (orange), PL polysaccharide lyase (yellow) (color figure online)

Table 1  Activity screening of fosmid clones on selected polysaccharide substrates

Clones encompassing the entire Sus-like PUL (as shown in Fig. S1) were chosen for this assay as indicated in brackets below the scaffold ID. 
Substrates were incorporated into LB agar at a concentration of 0.05 % (w/v). Zones of clearing were visualized using a Congo red assay and 
recorded as a positive or negative result. The E. coli EPI300™-T1R strain from the fosmid library kit was included as a negative control

Sc00026  
(H36 A20)

Sc00028  
(H39 N13)

Sc00033  
(H6 M11)

Sc00044  
(H30 F13)

Sc00066  
(H13 J8)

Control  
(no fosmid)

Carboxymethylcellulose + + + + + −
Xylan − − − − − −
Xyloglucan − + + + − −
Lichenan − + − + − −
Glucomannan + − − − − −
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locus encodes two proteins with GH5 domains and one 
with a GH94 domain, indicative of cellobiosidase and cel-
lobiose phosphorylase activities respectively. Accordingly, 
GH5a from Sc00066 is homologous (BlastX [12]; 75 % 
identity over 255 residues) to M40-2 (ACA61171), a pro-
tein cloned from buffalo rumen with degradative activity 
against p-nitrophenyl-d-cellobioside [9].

The PULs encoded on scaffolds Sc00028, 33 and 44 
are capable of targeting carboxymethylcellulose and 
xyloglucans; while the Sc00028 and Sc00044 PULs are 
also able to degrade lichenan. According to the classifi-
cation scheme proposed by Aspeborg et al. [2], the GH5 
enzymes encoded by these PULs belong to subfamily 4. 
Members of this subfamily with activities against xylo-
glucan and lichenan have been reported previously [2]. 
There are two Sus-like PULs with GH5 family proteins 
in the genome of P. ruminicola 23 (Fig. 1). Comparison 
of this genome to the Sus-like PUL-encoding contigs of 
Sc00028, 33, 44 and 66 using BlastN [12] revealed 50–
90 % coverage with 73–85 % sequence identity (Table 
S2). The PUL encoded by genes PRU_2514-19 is most 
similar to that found on Sc00033, while the locus at 
PRU_2222-32 includes three SusC and SusD-like pro-
teins, a structure not found in any of the fosmid clones. 
A PUL with CMCase activity that encodes multiple Sus-
like proteins was cloned from Svalbard reindeer rumen in 
a previous study [23]. Functional characterization of the 
two SusD-like proteins in this PUL indicated that differ-
ent mechanisms are used to interact with various forms 
of cellulose, and that they are able to bind to distinct 
features in the plant cell wall microstructure [15]. An 
increasing body of evidence suggests that Sus-like PULs 
may be capable of cellulose degradation in herbivores, 
although additional targeted experiments are required in 
order to confirm this hypothesis.

Sus-like PULs recovered from a published bovine rumen 
metagenome

As part of their analysis into the structural and func-
tional diversity of the fiber-adherent bovine rumen 
microbiome, Hess et al. [11] describe reconstruction of 
15 bacterial genomes from a substantial metagenomic 
dataset. Five of these reconstructed genomes (AC2a, AH, 
AJ, AGa and AQ) are from deeply branching members of 
the order Bacteroidales. Searches of these genomes were 
undertaken to recover additional Sus-like PULs. Five of 
these loci have been included in Fig. 1. Three Sus-like 
PULs from the genome of AC2a are shown—the cellu-
lase encoding PUL (AC2a_PUL1) has been described 
previously [11, 23]. The remaining two PULs from 
AC2a are predicted to target pectin (AC2a_PUL2) and 

β-glucan (AC2a_PUL3). The draft genomes of AJ and 
AH contain PULs with two presumptive GH10 endoxy-
lanases, suggesting a role in the degradation of hemicel-
lulose similar to that found in P. bryantii B14 and other 
related bacteria [8].

A further 36 Sus-like PULs were uncovered in P. bryan-
tii B14, P. ruminicola 23 and three of the five reconstructed 
rumen Bacteroidales genomes (AC2a, AH and AJ). Several 
additional SusC and SusD homologs were annotated in 
the genome sequences, but were not associated with rec-
ognized carbohydrate active enzymes in the dbCAN data-
base (data not shown). The putative PULs (Table S3) are 
predicted to target a diverse array of glycans, expanding 
the potential substrate range of such systems in the bovine 
rumen. Several loci described in Table S3 (e.g., PBR_0326 
to PBR_0345, PBR_0377 to PBR_0398, PRU_2666 to 
PRU_2716 and AJ_902 to AJ_918) are predicted to encode 
a large number of ORFs and include multiple Sus-like sys-
tems. Clustering of polysaccharide degradation genes is 
a strategy used by many bacteria to co-ordinate enzyme 
production and metabolic activities [13, 17]. Additional 
studies are required to confirm substrate specificity and to 
determine how the Sus-like PULs described in this study 
are regulated and expressed in response to the presence of 
different complex carbohydrates.

Conclusions

This paper describes more than 50 distinct Sus-like PULs 
from the bovine rumen microbiome, the most comprehen-
sive collection described in herbivores to date. Each locus 
has been phylogenetically assigned to the predominant gut 
bacterial phylum Bacteroidetes. In Prevotella ruminicola 
23, genes that were putatively associated with Sus-like 
PULs represent approximately 10 % of the total protein 
coding sequences in the complete genome. Association 
of a high proportion of the total genomic CAZyme reper-
toire with Sus-like genes has been shown previously for 
human gut Bacteroides isolates [17]. For many members 
of the Bacteroidetes, Sus-like PULs represent an impor-
tant mechanism for metabolism of a diverse range of plant 
and host-derived polysaccharides. The diversity found 
within loci as described in this manuscript and others [23, 
24, 30], in concert with previously observed differences in 
the substrate binding properties of SusD-like proteins [15] 
suggests that there is much to learn about the contribution 
of these cell-envelope-associated enzymatic complexes to 
plant biomass degradation in herbivores. This has implica-
tions for improving ruminant feed efficiency and discovery 
of novel systems for deconstruction of plant-based biofuel 
substrates.
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